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• Chemical-induced non-alcoholic hepatic steatosis is a worldwide
epidemiological concern.

• We propose integrated computational NAMs to assess the steatogenic potential
of chemicals, accounting for both toxicodynamics and toxicokinetics.

• Toxicodynamics was based on the predictions of molecular initiating events (MIE) of
the adverse outcome pathway (AOP) of steatosis.

• Toxicokinetics was estimated with an high-throughtput (HT) PBK model.

• Computational approaches were developed within the EU founded project ONTOX and were
independently applied to classify the NAM Designathon compounds (131 out of 150).

• The two classifications were combined to return an overall classification for the steatogenic
potential of chemicals.
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Schematic depiction of AOP network leading to hepatic steatosis 
(AOPs 57, 34, 36, 60 and 61 from the AOPWiki).

INTEGRATED COMPUTATIONAL NAM BASED ON

MOLECULAR INITIATING EVENTS (MIES) AND PBK 

PREDICTIONS FOR EVALUATION OF THE STEATOGENIC

POTENTIAL OF CHEMICALS.
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a NAM-BASED TOXICOKINETICS
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1. Multi-tasking (MT) model: simultaneous
modelling of multiple endpoints to

improve the final predictions.

2. Machine learning (ML) models: individual
QSAR based on ML and data
transformation methods (feature selection
with VSURF (2) and SMOTE (3)).
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Prediction probabilities of the RF were used to
build a ROC curve.
The ROC curve was partitioned into three triangles, so
that the sum of their areas maximizes the area under
the ROC (AUC).
Probability thresholds determined by the partition
were used to classify the chemicals into low, medium
and high risk.

MIE
Predictions

Steatosis model
(Random Forest)

Prediction
probabilities

QSARs to predict MIEs of steatosis were trained
on inhibition data from ChEMBL v33. Activity data
were converted to binary categories (threshold IC50
=10,000 nM).

a

NAM-BASED TOXICODYNAMICS – MIE ACTIVITY QSAR

A random forest (RF) model was
trained on steatosis data. Predictions of
the MT and ML models were used as
independent variables to weight the
contribution of each MIE to the final
steatogenic outcome.

b

Steatosis
data (4)

c

NAM-BASED TOXICOKINETIC – HT PBK MODEL

The HT-PBK model is parameterised with chemical input properties (physicochemical
and ADME) predicted with various computational tools:

S𝐴F
∗
=

Amount in the body (24h after last administration; after 5 years)

Average Daily Dose

• SAF (mean) > 200% = high systemic availability.

• 10% < SAF (mean) < 200% = medium systemic availability.

• SAF (mean) < 10% = low systemic availability.

• Water solubility
• Caco-2 permeability
• Human intrinsic hepatic clearance
• Fraction unbound to plasma proteins

• Distribution coefficient (logD) @pH =7.4
• Caco-2 permeability
• Plasma cearance

• Acidic and basic dissociation constant (pKa)

• Total cearance

• Distribution coefficient (logD) @pH =7.4
• Membrane affinity

1 2

High troughtput PBK models (HT-PBK) were developed with the freely available, open-
source modelling software PK-Sim.(5) HT-PBK was used to predict systemic availability.
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CLASS

CLASS

Toxicodynamics ( ) and toxicokinetics ( )
classifications were integrated to determine the final
risk category ( ).CLASS

LOW CONCERN

MODERATE CONCERN

HIGH CONCERN

NOT CLASSIFIED
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* Systemic availability factor redicted by the HT-PBK model
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Bioavailability classification of the EPAA 
compounds based on the HT-PBK predictions

Graphical representation of the concept of Adverse Outcome 
Pathway (AOP).

Activity classification of the EPAA compounds 
based on the steatosis predicting RF model

HIGH CONCERN

MEDIUM 
CONCERN

LOW CONCERN

*low performance, discarded


