Economic performance & climate policy in the EU: Insights from firm-level data

Aliénor Cameron ¹ Maria Garrone ²

¹Economix - Université Paris Nanterre Chaire Économie du Climat ADEME

²Chief Economist Team (A1), DG GROW, European Commission

Note: The views and opinions expressed in this presentation are those of the authors and do not in any way represent those of the European Commission or of the ADEME.

PRELIMINARY RESULTS

7 Feb. 2024

Introduction •00000	Data 000	Empirical approach	Results 000	Discussion 000	References	Appendix 00

Climate vs competitiveness?

Need to increase stringency of climate policies

*Net zero emissions excl LULUCF is achieved through deployment of BECCS; other novel CDR is not included in these pathways

For more information visit https://1p5ndc-pathways.climateanalytics.org/countries/european-union

Source: Climate Analytics

 Introduction
 Data
 Empirical approach
 Results
 Discussion
 References
 Appendix

 Climate
 vs
 competitiveness?

 But risk of carbon leakage

If international partners do not share a comparable ambition to the EU, there is a risk of carbon leakage.

- European Commission, 2021

Introduction 00000	Data 000	Empirical approach	Results 000	Discussion 000	References	Appendix 00
The FU F	-TS					

Cornerstone of EU industrial decarbonization

Harmonized and efficient approach to address climate change within Single Market

Market-based instrument

 \simeq 2,000 industrial firms

EU Industrial emissions covered (Excluding power sector)

3 types of GHGs (CO2, N20 and PFCs)

Energy-intensive sectors (cement, metal, chemicals, glass, ceramics, ...)

Introduction 000●00	Data 000	Empirical approach	Results 000	Discussion 000	References	Appendix 00
The EU I	ETS					

Increasing stringency

Figure: EUA price

Expectations based on literature

$\rightarrow\,$ Pollution haven hypothesis

- » Firms in regulated countries will move to unregulated countries to avoid additional costs and competitiveness loss (Markusen, 1975; Markusen et al., 1993)
- » No negative impacts on economic performance or competitiveness so far (Joltreau & Sommerfeld, 2019; Trinks et al., 2020; Verde et al., 2019)
- → **Porter hypothesis** (Dechezleprêtre & Kruse, 2018; Porter & van der Linde, 1995)
 - » Climate policies induce technological progress (weak version)
 - » Maybe also induce productivity increases (strong version)
 - » Some increases in patenting and R&D expenditure (Borghesi et al., 2015; Calel, 2020; Calel & Dechezleprêtre, 2014; Teixidó et al., 2019)

BUT evidence is mostly focused on first two phases of EU ETS

What is the impact of the EU ETS' third phase on firms' economic performance?

Contributions:

- $\rightarrow\,$ Construction of micro-level dataset connecting financial and emissions data at the firm level covering the entire third phase
- $\rightarrow\,$ New measure of emission intensity in volumes based on this data
- \rightarrow Analysis of firms' climate and economic performance

Merging two data sources:

- \rightarrow European Union Transaction Log (EUTL) \rightarrow database reporting verified emissions for all installations regulated under the EU ETS
- $\rightarrow~{\sf ORBIS}$ \rightarrow firm-level financial data

Building on work from other researchers:

- $\rightarrow\,$ European Union Transaction Log scraped and structured by Abrell (2022)
- \rightarrow Initial matching between EUTL and ORBIS from Letout (2021) \rightarrow JRC project financed by DG GROW, based on 2019 account holder list
- $\rightarrow\,$ Improved and updated matching procedure (current work with DG GROW)

Introduction 000000	Data o●o	Empirical approach	Results 000	Discussion 000	References	Appendix 00

Database coverage

 \approx 75% manufacturing firms covered for phase 3

New measure of emission intensity

Volume-based

$$\underbrace{\textit{FA}_{\textit{inst},t}}_{\text{In data}} = \textit{V}_{\textit{inst},t-1} \times \underbrace{\textit{B}_{\textit{product}} \times \textit{CSCF}_t \times \textit{TCF}_{\textit{sect},t}}_{\text{In regulation}}$$

So we can recover production volumes as follows:

$$V_{\textit{inst},t-1} = \textit{FA}_{\textit{inst},t} imes rac{1}{B_{\textit{product}} imes \textit{CSCF}_t imes \textit{TCF}_{\textit{sect},t}}$$

Limitation: free allocations are determined at the SUB-installation level, and we do not have data at this level of granularity. To mitigate a potential bias, we use Monte Carlo simulations based on different product benchmarks.

Specification follows Trinks et al. (2020).

- \rightarrow Economic Performance:
 - » ROA
 - Turnover
 - Costs
 - » Profit margin
 - » EBITDA margin
 - » Labor productivity
 - » Markup (TL)

\rightarrow Firm-level controls:

- » Turnover
- » Current ratio (= $\frac{\text{Assets}}{\text{Liabilities}}$)
- » Opened installations

Potential endogeneity between firms' Economic and Emission Performance

 \rightarrow Firms with more overall efficiency will likely perform better in both measures (simultaneity bias)

Possible solutions:

- $\rightarrow\,$ Diff-in-diff $\rightarrow\,$ Not possible because no control group
- \rightarrow IV strategy \rightarrow Bartik instrument applicable

Following Fontagné et al. (2023), we use a Bartik instrument

Two indicators of **Competition** setting:

- \rightarrow Import Intensity \blacktriangleright
- \rightarrow Product Specialization \triangleright

Introduction 000000	Data 000	Empirical approach	Results ●00	Discussion 000	References	Appendix 00
–		•.				

Emission Intensity

Variables are in log

Emission Intensity IV × Import Intensity

Emission Intensity IV × Intra-branch Trade Intensity

- \rightarrow In line with previous evidence, results show little or negative effect of Emission Performance on Economic Performance
- $\rightarrow\,$ Even in its third phase, EU ETS does not seem to have had negative effect on participating industrial firms
- $\rightarrow\,$ Potential explanation: firms have adapted to rising carbon costs rather than relocated
- $\rightarrow\,$ Further analysis needed on underlying mechanisms of these results

Introduction 000000	Data 000	Empirical approach	Results	Discussion 000	References	Appendix 00
Next ste	ps					

- $\rightarrow\,$ Explore channels of effects, especially innovation
- $\rightarrow\,$ Merging dataset with patent and/or R&D investment data

Introduction 000000	Data 000	Empirical approach	Results 000	Discussion 00●	References	Appendix 00

Thank you for your attention!

Questions/comments? alienor.cameron@chaireeconomieduclimat.org maria.garrone@ec.europa.eu

Introduction 000000	Data 000	Empirical approach	Results	Discussion 000	References	Appendi x 00
------------------------	-------------	--------------------	---------	-------------------	------------	------------------------

Abrell, J. (2022). Database for the European Union Transaction Log.

- Borghesi, S., Cainelli, G., & Mazzanti, M. (2015).Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry. <u>Research Policy</u>, <u>44</u>(3), 669–683.
- Calel, R. (2020).Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade. American Economic Journal: Economic Policy, 12(3), 170–201.
- Calel, R., & Dechezleprêtre, A. (2014). Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market [Publisher: MIT Press]. The Review of Economics and Statistics, 98(1), 173–191.
- Commission, E. (2021). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: 'Fit for 55': Deilvering the EU's 2030 Climate Target on the way to climate neutrality.
- Dechezleprêtre, A., & Kruse, T. (2018).A review of the empirical literature combining economic and environmental performance data at the micro-level [Publisher: OECD].
- Fontagné, L., Martin, P., & Orefice, G. (2023). The Many Channels of Firm's Adjustment to Energy Shocks: Evidence from France. Banque de France publications.
- Joltreau, E., & Sommerfeld, K. (2019). Why does emissions trading under the EU Emissions Trading System (ETS) not affect firms' competitiveness? Empirical findings from the literature. Climate Policy, 19(4), 453–471.
- Letout, S. (2021). Firm level data in the EU ETS (JRC-EU ETS-FIRMS) [Publisher: European Commission, Joint Research Centre (JRC)].
- Markusen, J. R. (1975). International externalities and optimal tax structures. Journal of International Economics, 5(1), 15-29.
- Markusen, J. R., Morey, E. R., & Olewiler, N. D. (1993). Environmental Policy when Market Structure and Plant Locations Are Endogenous. Journal of Environmental Economics and Management, 24(1), 69–86.
- Porter, M. E., & van der Linde, C. (1995). Toward a New Conception of the Environment Competitiveness Relationship. Journal of Economic Perspectives, 9(4), 97–118.
- Teixidó, J., Verde, S. F., & Nicolli, F. (2019). The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence. Ecological Economics, 164, 106347.
- Trinks, A., Mulder, M., & Scholtens, B. (2020). An Efficiency Perspective on Carbon Emissions and Financial Performance. Ecological Economics, 175, 106632.
- Verde, S. F., Teixido, J., Marcantonini, C., & Labandeira, X. (2019).Free allocation rules in the EU emissions trading system: What does the empirical literature show? [Publisher: Taylor & Francis __eprint: https://doi.org/10.1080/14693062.2018.1549969]. <u>Climate Policy</u>, 19(4), 439–452.

Import intensity =
$$\frac{\text{Imports}}{\text{Domestic Production+Imports}}$$

Interpretation:

 $\rightarrow\,$ Size of imports compared to size of domestic market

Intra-industry Trade Intensity = $\frac{(\text{Exports+Imports}) - |\text{Exports-Imports}|}{\text{Exports+Imports}}$

Interpretation:

- ightarrow Indicator varies between 0 and 1
- $\rightarrow 0 = AII$ trade flows are inter-industry so no product differenciation
- $\rightarrow \ 1 =$ All trade flows are intra-industry so full differenciation of products

⊳ Back