

## Al-Assisted Classifications of Chemicals for Systemic Toxicity

Presenter: Siggi Morath

**Affiliation**: European Commission, Directorate F – Health and Food - Systems Toxicology Unit (F3) -

incorporating EURL ECVAM

**Introduction**: In the EPAA Designathon, I propose an AI-powered solution to improve systemic toxicity classification in humans, utilizing Artificial Intelligence (AI) to expedite and enhance chemical risk assessments.

**Abstract**: My AI-assisted approach utilizes three levels of concern to quickly and accurately assess chemical risks. By leveraging probabilistic risk assessment (PRA) and automated data analysis, I propose a new EU chemical classification system, "Chemicals 2.0," to categorize chemicals by risk level. This solution promises to reduce costs, increase efficiency, and enhance safety for both people and the environment.

## Methodology:

- Component Methods: Utilizes a main prompt for AI analysis and classification of chemicals based on toxicodynamic activity and systemic availability.
- Data Integration: Combines hazard data, exposure data, and structure-activity relationship (SAR) data for weight of evidence analysis, modeling, and expert judgment.
- Criteria for Concern Levels: Severity of health effects, likelihood of exposure, and data uncertainties are considered for classifying chemicals as high, medium, or low concern.
- Scientific Basis: Integrates toxicological principles, QSARs, and machine learning for robust predictions.

synonyms with CAS number XX-XX-X and classify both as either high, medium or low"

Main prompt for e.g. Google Gemini-Pro operated by poe.com: "What is the toxicodynamic activity and potential systemic availability of common chemical name or its synonyms with CAS number XX-XX-X and classify both as either high, medium or low for mammals?"

Alternative prompt: "Evaluate activity based on toxicodynamic properties and potential systemic availability based on toxicokinetic properties for common chemical name or its

## **Limitations & Future Steps**:

- Data availability, chemical complexity, heterogeneity of effects, and inherent uncertainties present challenges.
- Regulatory compliance must still be adhered to.
- Future steps include validation studies, engagement with regulatory bodies, and continuous improvement as new data becomes available.
- Conclusion: The proposed AI-based solution offers a transformative approach to chemical risk assessment, streamlining classification and prioritizing safety in an innovative and effective manner.

**References**: Berggren E, Worth AP. "Towards a future regulatory framework for chemicals in the European Union - Chemicals 2.0." Regul Toxicol Pharmacol. 2023.



© European Union, 2023