

Bob van de Water

EU-ToxRisk Achievement: Guidance on method description.

150 test method descriptions uploaded on the EU-ToxRisk Knowledge Platform

Archives of Toxicology (2020) 94:2435–2461 https://doi.org/10.1007/s00204-020-02802-6

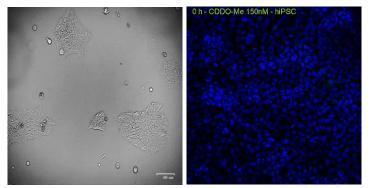
IN VITRO SYSTEMS

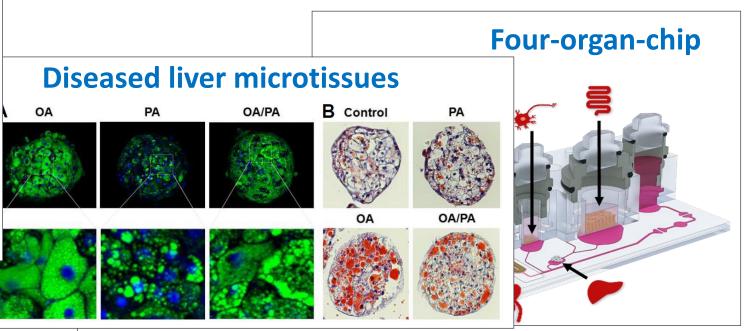
The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods

Alice Krebs^{1,2} • Barbara M. A. van Vugt-Lussenburg³ · Tanja Waldmann^{1,20} · Wiebke Albrecht⁴ · Jan Boei⁵ · Bas ter Braak⁶ · Maja Brajnik⁷ · Thomas Braunbeck⁸ · Tim Brecklinghaus⁴ · Francois Busquet⁹ · Andras Dinnyes¹⁰ · Joh Dokler⁷ · Xenia Dolde¹ · Thomas E. Exner⁷ · Ciarán Fisher¹¹ · David Fluri¹² · Anna Forsby^{13,21} · Jan G. Hengstler⁴ · Anna-Katharina Holzer¹ · Zofia Janstova¹⁰ · Paul Jennings¹⁴ · Jaffar Kisitu^{1,2} · Julianna Kobolak¹⁰ · Manoj Kumar¹⁵ · Alice Limonciel¹⁴ · Jessica Lundqvist^{13,21} · Balázs Mihalik¹⁰ · Wolfgang Moritz¹² · Giorgia Pallocca⁹ · Andrea Paola Cediel Ulloa¹³ · Manuel Pastor¹⁶ · Costanza Rovida⁹ · Ugis Sarkans¹⁷ · Johannes P. Schimming¹⁸ · Bela Z. Schmidt¹⁹ · Regina Stöber⁴ · Tobias Strassfeld¹² · Bob van de Water¹⁸ · Anja Wilmes¹⁴ · Bart van der Burg³ · Catherine M. Verfaillie¹⁵ · Rebecca von Hellfeld⁸ · Harry Vrieling⁵ · Nanette G. Vrijenhoek¹⁸ · Marcel Leist^{1,9}

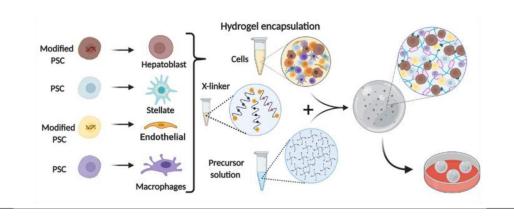
Krebs et al. Arch Toxicol. 2020 Jul;94(7):2435-2461.

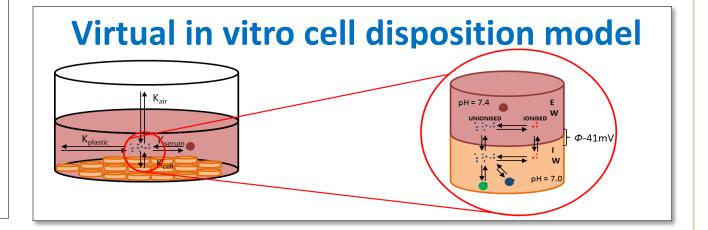
Template for the Description of Cell-Based Toxicological Test Methods to Allow Evaluation and Regulatory Use of the Data


Alice Krebs^{1,2}, Tanja Waldmann¹, Martin F. Wilks³, Barbara M. A. van Vugt-Lussenburg⁴, Bart van der Burg⁴, Andrea Terron⁵, Thomas Steger-Hartmann⁶, Joelle Ruegg⁷, Costanza Rovida⁸, Emma Pedersen⁹, Giorgia Pallocca^{1,8}, Mirjam Luijten¹⁰, Sofia B. Leite¹¹, Stefan Kustermann¹², Hennicke Kamp¹⁴, Julia Hoeng¹⁴, Philip Hewitt¹⁵, Matthias Herzler¹⁶, Jan G. Hengstler¹⁷, Tuula Heinonen¹⁸, Thomas Hartung^{8,19}, Barry Hardy²⁰, Florian Gantner²¹, Ellen Fritsche²², Kristina Fant⁹, Janine Ezendam¹⁰, Thomas Exner²⁰, Torsten Dunkern²³, Daniel R. Dietrich²⁴, Sandra Coecke¹¹, Francois Busquet^{8,25}, Albert Braeuning²⁶, Olesja Bondarenko²⁷, Susanne H. Bennekou²⁸, Mario Beilmann²⁹ and Marcel Leist^{1,2,8}


Krebs et al. ALTEX. 2019;36(4):682-699.

EU-ToxRisk Achievement: Advanced novel test methods




CRISPR-based fluorescent reporters in stem cells

Stem cell-derived multi-liver-cell model

EU-ToxRisk Achievement: Advisory document on regulatory requirements for acceptance of NAM-assisted RAx

Prediction of a 90 day repeated dose toxicity study (OECD 408) for 2-Ethylbutyric acid using a read-across approach to other branched carboxylic acids.

developmental and reproductive toxicity data gap

butyric acid (2-EBA) has to of more than 100 t/a. The udv. according to a scenario see a consistent trend entified in the in vivo studie: silico models are used in

with different branched ound. Beside high structura o-chemical (pc) paramete as water solubility and for a potential with repeated oral udies, in which live ver weight. Valproic acid ad-across hypothesis is osis. In addition to the nin compound, PVA has a third cute study up to the highest acy of NAM data.

toxikodynamics within the

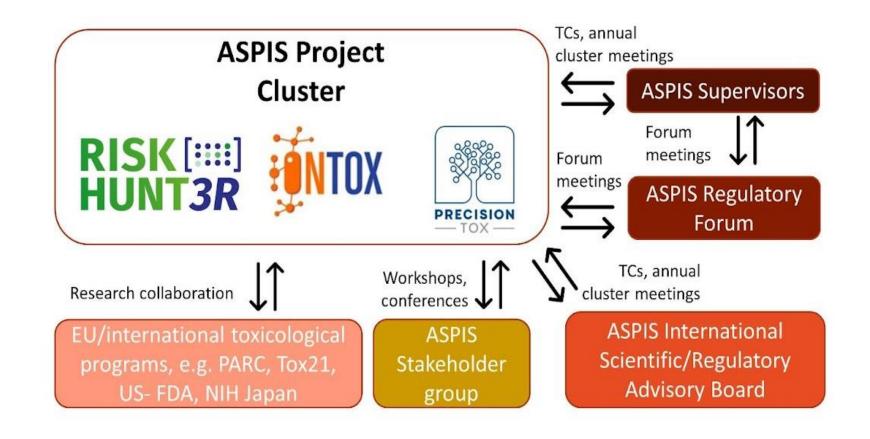
del was established, baser entrations, which guided the PBPK models were properties and in vitro c clearance (CLint Hop good predictive ns. Based on this proof of

describing the development steatosis were compiled from stwork. The AOP network

ASPIS: "Animal-Free Safety Assessment of Chemicals: Project Cluster for Implementation of Novel Strategies"

- 2021-2026 under H2020
- €60M funded budget
- 70 institutions united in 3 projects across 16 EU countries + US

Objectives

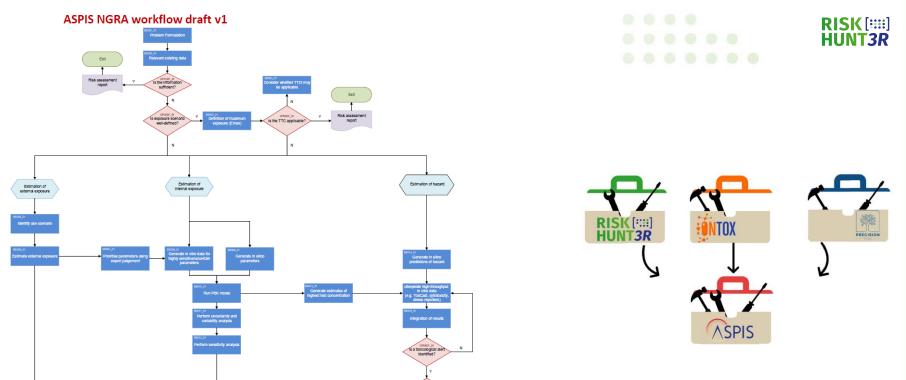


- advance NAMs for the protection of human health and the environment
- improve certainty in the safety assessment of chemicals
- facilitate practicably implementable non-animal solutions in various public (e.g. regulatory agencies) and private (e.g. industry) sectors
- translate results, methods and solutions from the scientific research community into safety assessment practice
- promote regulatory uptake and commercial exploitation of NAMs
- contribute to the 3R principles

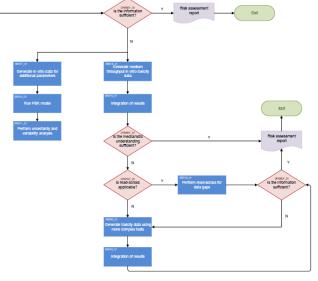
ASPIS interaction with satellite entities

Background of NGRA approaches

Food for Thought ...


Ready for Regulatory Use: NAMs and NGRA for Chemical Safety Assurance

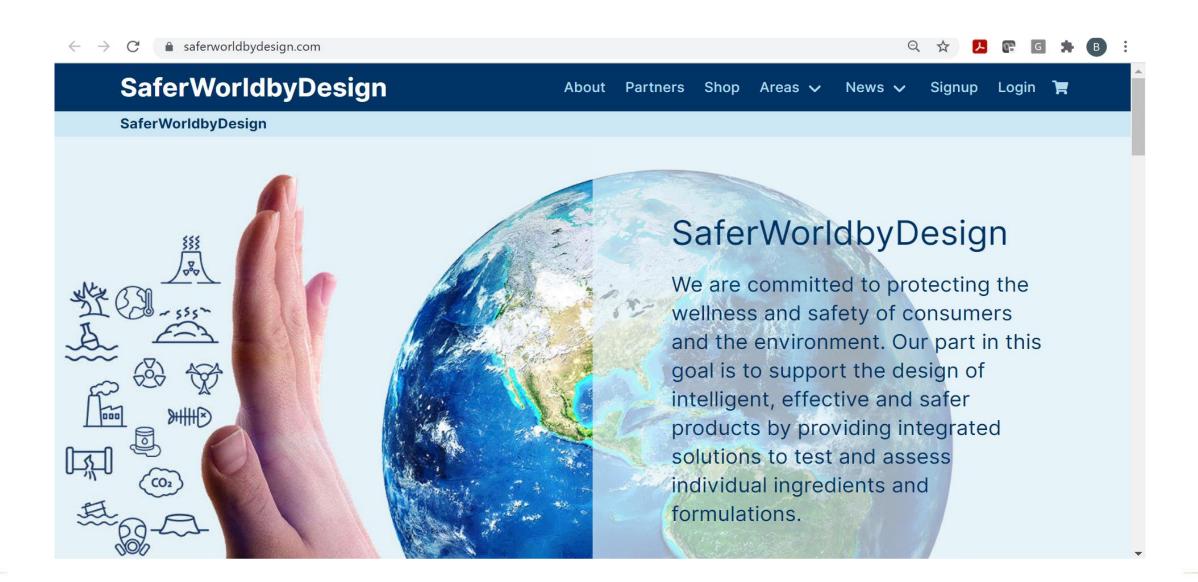
Paul L. Carmichael^{1,2}, Maria T. Baltazar¹, Sophie Cable¹, Stella Cochrane¹, Matthew Dent¹, Hequn Li¹, Alistair Middleton¹, Iris Muller¹, Georgia Reynolds¹, Carl Westmoreland¹ and Andrew White¹


¹Safety & Environmental Assurance Centre (SEAC), Unilever, Sharnbrook, Bedfordshire, UK; ²Toxicology, Wageningen University & Research, Wageningen, The Netherlands

ALTEX (2022), 399, 419	The assessment is
OBJECTIVES	1. focused on safety
	2. exposure-led
	3. hypothesis-driven
	4. based on adversities (rather than "perturbations")
<i>'</i>	The assessment uses
PROCEDURE	5. consideration of all existing info
	6. tiered and iterative approaches
	7. robust and relevant methods and strategies
	The assessment includes
DOCUMENTATION	8. documentation and quantification of uncertainty
	9. documentation of all steps and the rationale for conclusions

ASPIS NGRA workflow

- ASPIS partner workshop 27 Oct 2022
- ASPIS Open Symposium
- ASPIS Regulatory Forum
- Stakeholder workshop
- Case studies



EU-ToxRisk Achievement: SaferWorldbyDesign

Critical issues for discussion.

- Need to facilitate 'validation' of science driven test methods.
- Requirement to enhance access of test methods for stakeholders.
- Need to break the (stakeholder) barrier for NAM application in NGRA.

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964537.

Master Presentation 23.11.2022