
Exposure-Based Bioactivity Classification (ExpoClass)

Leedale, J²; Pecquet, AM¹; Lord, C¹; Adeleye, Y²; Charlton, A¹; Dreier, D²; Fouka, P²; Goetz, A¹; Karmaus, A¹; Kende, A²; Rudd, K²; Wolf, DC¹; Webb, S²; Currie, RA²

1. Syngenta Crop Protection, Greensboro, NC, USA; 2. Syngenta Crop Protection, Bracknell, UK

ExpoClass Framework

- A framework to utilize NAMs-based methods in chemical hazard classification
- Combines external exposure coupled with forward dosimetry to define relevant concentrations for NAMs-based assay testing
 - define generic bands of oral exposure or integrate realistic exposure bounds for toxicodynamic (TD) assays
 - ensure *in vitro* testing is appropriate for hazard identification by only testing at concentrations defined by the toxicokinetics (TK) models
 - sidesteps the need to link *in vitro* activity to adversity, as potential for non-biologically relevant activity is avoided
- In vitro activity is basis for chemical hazard classification
 - scientifically robust and sufficient to begin implementing as a NAMs-based hazard classification system

ExpoClass Methodological Details			
Tier 1: Potential for Systemic Availability (NAM-based TK)		Tier 2: Activity Tier (NAM-based TD)	Tier 3: Classification
 Step 1: Exposure Banding Unknown exposure: Use generic (STOT-RE) classification bands of 1 and 100 mg/kg Partially or fully defined exposure, controlled exposure: 	 Step 2: Forward Dosimetry Steady state acute and chronic kinetics in adult humans modelled using a generic TK model with generic physiological parameters: HTTK, PKsim, Tkplate, Plethem, GastroPlus, or Sim Crue 	 Step 3: Activity Testing Determine the TD activity at the defined relevant exposure concentration Battery of <i>in vitro</i> assays with broad biological coverage Assays will need to be explicitly 	 Step 4: Classification Use biological activity (Step 3) at the internal dosimetry (Step 2) for final hazard classification Incorporate uncertainty – likely qualitative
 Use quantified exposure, i.e., lower and upper bound of measured environmental exposure Use any existing QSAR-based exposure banding approach, such as the modelled/ predicted human exposure or a TTC exposure band based on chemical structure 	SimCyp ADME/phys-chem input parameter sources: Tier 1 = measured experimentally Tier 2 = QSAR (OPERA, VEGA, Gastroplus ADMET predictor) Tier 3 = conduct additional studies to measure 	 defined using case studies i.e., targeting transcriptomics, metabolomics, proteomics Characterize uncertainty/variability Utilize modeling approaches that provide confidence intervals Apply <i>in vitro</i> distribution models to calculate free <i>in vitro</i> concentrations vs nominal 	 No response at either concentration = low concern Response at high but not at low concentration = medium concern Response at low concentration = high concern

Discussion and Conclusions

Framework Benefits

- Incorporates realistic exposure into hazard classification ranking
 - provides upper and lower bounds on hazard based on human relevant exposure for *in vitro* testing assays
- TK and TD metrics are incorporated without an explicit integration step
 - integrates TK and TD into a single decision point
 - functionally simplifies the final classification criteria into a "yes" or "no" for activity at each tested concentration
- Decision point defined by user as risk or hazard-based outcome
 - if concentration cannot be tested/achieved *in vitro*, or if below existing thresholds (i.e., iTTC), then the concern is low
- Flexibility to be tailored for fit-for-purpose, from screening level, prioritization, or definitive assessment by refinement of exposure band
 - screening level: outcomes other than a "low concern" could be used to trigger additional and more targeted testing
 - prioritization level: compounds with highest modeled exposure
- All testable chemicals are classifiable

- Generic concept does not incorporate an expression of variability. Variability or uncertainty can be incorporated in each Step
 - Step 1: confidence intervals or upper and lower measured or predicted exposure bounds

Uncertainty and Domains of Applicability

- Step 2: QSAR models to predict ADME/phys-chem properties have confidence matrices to indicate high and low quality
- Upper bound (e.g., 99% CI) internal concentration from highest predicted tissue/blood compartment as test concentration increases conservatism
- Step 3: selection of *in vitro* model suite includes those with rigorous validation in terms of variability, reproducibility, and uncertainty

Next steps - run case study chemicals through conceptual framework

- selection of appropriate tools for Step 2 (TK model) and Step 3 (assays cover the intended biological activity, TD)
- evaluate framework by comparison to existing hazard classification outcomes, using known biology/toxicity

