

Experiences from the US-Roadmap to regulatory acceptance of non-animal methods

Nicole C. Kleinstreuer, PhD

Director, NTP Interagency Center for the Evaluation of Alternative Toxicological Methods

Executive Director, Interagency Coordinating Committee for the Validation of Alternative Methods

National Institutes of Health • U.S. Department of Health and Human Services

NICEATM and ICCVAM

- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), supporting the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM)
- ICCVAM Authorization Act of 2000: To establish, wherever feasible, guidelines, recommendations, and regulations that promote the regulatory acceptance of new and revised toxicological tests that protect human and animal health and the environment while reducing, refining, or replacing (3Rs) animal tests and ensuring human safety and product effectiveness.

7 Regulatory Agencies

Consumer Product Safety Commission Department of Agriculture Department of the Interior Department of Transportation Environmental Protection Agency Food and Drug Administration Occupational Safety and Health Administration

*Other participants include: NCATS, Tox21 Representatives

https://ntp.niehs.nih.gov/go/ 2021iccvamreport

10 Research Agencies

Agency for Toxic Substances and Disease Registry National Institute for Occupational Safety and Health National Cancer Institute National Institute of Environmental Health Sciences National Library of Medicine National Institutes of Health Department of Defense Department of Energy National Institute of Standards and Technology Veterans Affairs Office of Research and Development

More information: https://ntp.niehs.nih.gov/go/iccvam

U.S. Strategy and Roadmap

"Advances in science and technology have not been effectively leveraged to predict adverse human health effects"

A Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of Chemicals and Medical Products in the United States

Help end-users guide the development of the new methods

Use efficient and flexible approaches to establish confidence in new methods

Encourage the adoption of new methods by federal Agencies and regulated industries

https://ntp.niehs.nih.gov/go/natl-strategy

U.S. Strategy and Roadmap

"Advances in science and technology have not been effectively leveraged to predict adverse human health effects"

https://ntp.niehs.nih.gov/go/natl-strategy

Key Concepts to Consider During Development and Implementation of Flexible, Fit-for-Purpose NAMs Validation Strategies

Draft ICCVAM Validation Workgroup Report, Figure 1 Adapted from van der Zalm et al. 2022

https://ntp.niehs.nih.gov/go/ICCVAM-submit

Examples of Endpoints where Biological and Mechanistic Relevance of NAMs has been Demonstrated to Support Regulatory Applications

Endpoint	Summary	Reference
Skin sensitization	The endpoint has a well-developed human relevant AOP to which defined approaches combining several NAMs are mapped and described in OECD Guideline 497.	Kleinstreuer et al., 2018; OECD, 2021a
Endocrine disruption	Established pathway models using complementary NAMs as part of an integrated strategy are available for estrogen and androgen receptor activity. EPA accepts these NAMs for Tier 1 screening in the Endocrine Disruptor Screening Program.	Judson et al., 2015; Kleinstreuer et al., 2017; EPA, 2023
Developmental neurotoxicity	Limited AOPs exist for this complex endpoint. Instead, a battery of NAMs covering critical processes of human neurodevelopment has been developed. An OECD GD on the battery is available that includes integrated approaches to testing and assessment (IATA) case studies.	Crofton and Mundy, 2021; OECD, 2022a; OECD, 2023
Inhalation toxicity	An alternative approach using an in vitro human-cell based assay and computational modeling was used to characterize the hazard of chlorothalonil and derive a point of departure for use in EPA human health risk assessment. This approach was also published as an OECD IATA case study.	Corley et al., 2021; EPA, 2021c; OECD, 2022b

Acute Toxicity Six-Pack Replacement

Dermal lethality	 US EPA Waiver guidance available; Human (or rat) in vitro data for dermal absorption 	
Oral lethality	 In silico (CATMoS) for single chemicals; GHS additivity equation for formulations 	
Inhalation lethality	 3D ALI models being evaluated; LC50 database for in silico model development ongoing 	
Eye irritation	 NAMs for Cat I and/or Cat IV (TG 437, 438, 460, 491, 492, 494, 496); Prospective testing ongoing; Human-biology based DAs 	
Skin irritation	 NAMs for Cat I or Cat IV (TG 430, 431, 435, 439); Prospective testing ongoing; Human-biology based DAs 	
Skin sensitization	 EPA science policy, draft risk assessment, and OECD international DASS guideline 	
Mansouri et al. 2021 EH	P: Clippinger et al. 2021 Cut Ocu Tox: Rooney et al. 2021 Reg Tox Pha	rm:

Mansouri et al. 2021 EHP; Clippinger et al. 2021 Cut Ocu Tox; Rooney et al. 2021 Reg Tox Pharm; Allen et al. 2021 ALTEX; Hamm et al. 2021 Reg Tox Pharm; van der Zalm et al. 2023 Cut Ocu Tox

Acute Oral Toxicity: Global Crowdsourcing Predictive Models

- 35 Groups: academia, industry, govt
- Curate reference data to train & test models: >10k chemicals
 - Use molecular structure and chemical properties to predict toxicity (e.g. endocrine disruption, acute systemic effects)
 - Combine best models together into "ensemble" approaches
- Create open access AI/ML modeling suite

https://github.com/

NIEHS/OPERA

Kleinstreuer et al. Comp Tox (2018); Mansouri et al. J Cheminform (2018), Env Health Persp (2020, 2022)

ICE: The Integrated Chemical Environment

ICE v4.0.1 August 2023

Integrated Chemical Environment

https://ice.ntp.niehs.nih.gov/

Bell et al. 2017 EHP Bell et al. 2020 Tox In Vitro Abedini et al. 2021 Comp Tox Daniel et al. 2022 Front Toxicol

User Friendly DASS App

Application of DASS to Risk Assessment

Isothiazolinone biocides are used as material preservatives to prevent the growth of microbial organisms and are used in industrial processes and consumer products

https://www.federalregister.gov/documents/2020/05/14/2020-10376/pesticide-registration-review-draft-human-health-and-ecological-risk-assessments-for-several

US EPA/OCSPP NAMs Metrics

https://www.epa.gov/pesticide-scienceand-assessing-pesticide-risks/strategicvision-adopting-new-approach-0

Strategic Vision for Adopting New Approach Methodologies - Metrics

Fiscal year	Granted	Animal Reduction	Cost Savings*	
2018	62	16,500	\$8,900,000	
2019	57	22,000	\$8,500,000	
2020	36	11,800	\$3,500,000	
2021	70	29,500	\$9,100,000	

Hazard and Science Policy Council (HASPOC) Metrics

Chemistry and Acute Toxicology Science Advisory Council (CATSAC) Metrics

Fiscal Year	Studies Saved	Animal Reduction	Cost Savings*
2018	18	171-384	\$170,400
2019	24	255-590	\$284,900
2020	12	102-178	\$56,500
2021	18	165-410	\$221,700

Fiscal Year	Eye Irritation Tests		Skin Irritation Tests		Skin Sensitization Tests	
	OPP	OPPT	OPP	OPPT	OPP	OPPT
2018	19	45	11	56	1	20
2019	12	40	7	49	0	19
2020	13	42	7	52	3	31
2021	32	39	28	54	12	23
2022	17	43	13	38	7	17
Total	93	209	66	249	23	110

Non-animal Test Methods

Acknowledgments

The NICEATM Group

ICCVAM 2020-2021 Biennial Progress Report

https://ntp.niehs.nih.gov/go/2021iccvamreport

Subscribe to NICEATM News

https://ntp.niehs.nih.gov/go/niceatm

ICCVAM VWG

All ICCVAM Members

